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ABSTRACT | A physical unclonable function (PUF) is an

integrated circuit (IC) that serves as a hardware security

primitive due to its complexity and the unpredictability

between its outputs and the applied inputs. PUFs have received

a great deal of research interest and significant commercial

activity. Public PUFs (PPUFs) address the crucial PUF limitation

of being a secret-key technology. To some extent, the first

generation of PPUFs are similar to SIMulation Possible, but

Laborious (SIMPL) systems and one-time hardware pads, and

employ the time gap between direct execution and simulation.

The second PPUF generation employs both process variation

and device aging which results in matched devices that are

excessively difficult to replicate. The third generation leaves the

analog domain and employs reconfigurability and device aging

to produce digital PPUFs. We survey representative PPUF

architectures, related public protocols and trusted information

flows, and related testing issues. We conclude by identifying the

most important, challenging, and open PPUF-related problems.

KEYWORDS | Cryptographic protocols; physical unclonable

function (PUF); public PUF (PPUF)

I . INTRODUCTION

The initial impetus for modern cryptography was provided

by the first public-key primitives and protocols in 1976.

Using mathematical and algorithmic mechanisms, several

primitives (building blocks) and numerous protocols that

target a variety of classic cryptographic tasks have been
proposed, implemented, and widely used. The initial

emphasis was on secure communication between compu-

ters that are placed in physically secured locations.

Classic cryptographic mechanisms and protocols are

among the most surprising and elegant algorithms within

the wide spectrum of computer science tasks. Although

their mathematical correctness is still not proved, it is

widely considered that they are secure. However, it has

also been demonstrated that classic cryptographic systems

are easily compromised using side-channel techniques and
physical attacks.

More recently, a new type of security primitive, the

physical unclonable functions (PUFs), has attracted a great

deal of attention. A PUF is a multiple-input–multiple-

output function that has hard-to-predict dependency

between the outputs and the inputs. While the initial

proposal used an optical mesoscopic system for demon-

stration, the tremendous growth in interest in PUFs is due
to its standard semiconductor integrated circuit (IC)

implementation. The uniqueness of identical PUF design

is provided by currently ubiquitous process variation.

Several PUF architectures (e.g., arbiter based, ring

oscillator, and SRAM) have been proposed, implemented,

and analyzed. The initial security protocol was secret key

in which one party collects a set of challenge–response

pairs before releasing the PUF to another party. The
authentication of the second party can now be done by

the first party by issuing a challenge. Only the entity with

the PUF can respond to an unknown challenge fast.

A PUF is a low-cost, small-area, and power-efficient

security primitive that has good resiliency against side-

channel and physical attacks. It has also been demonstrated

that PUFs can be used for the creation of a variety of

security protocols. However, PUFs remain a secret-key
primitive which is an essential constraint for their use in

many applications.

The introduction of public physical unclonable func-

tions (PPUFs) was motivated by a need to create an

ultrafast, ultralow-power public-key security primitive.

The definition of a PPUF is a multiple-input–multiple-

output system that is much faster to execute than it is to

simulate, and whose security no longer relies on the
secrecy of its physical parameters as PUFs do. Instead,

PPUFs derive their security from large, preferably

exponential, discrepancies between the time required for
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response calculation from the private key and the time
required to simulate the correct response from the public

key. This enables PPUFs to underlie several public-key

protocols and provide all the novel facilities that this

entails, including easier key management and distribution,

document signing, data exchange with untrusted parties,

etc. Further, PPUFs can outperform classical public-key

security primitives in terms of delay, energy, and

throughput requirements owing to simpler and computa-
tionally less expensive design, and improve upon their

resilience to side-channel and physical attacks [1].

Our goal is not just to present the use of PPUFs in a wide

spectrum of security protocols and applications ranging

from cryptography to trust and privacy, but also to describe

their use in other applications such as intellectual property

protection of software and hardware, synthesis of secure

architectures and systems, and other emerging applica-
tions. We emphasize three dimensions: security primitives,

protocols, and underlining security and design paradigms.

II . PPUF ARCHITECTURES

A. Public Physical Unclonable Function
The first PPUF design used a simple structure of xor

gates which had an expected exponential amount of

glitching relative to the depth of circuitry [2]. Fig. 1

illustrates PPUF operation with an example of a simple

PPUF circuit and the variation in gate delay characteristics

caused by manufacturing processes variation. Assuming a

stable circuit output after the input vector ‘‘01’’ is
presented, introducing a new input vector ‘‘10’’ at time

t¼0 produces transient behavior: At t¼8.8 ps (t¼9.3 ps)

the output at gate B (A) switches to ‘‘0’’, and then to ‘‘1’’ at

t ¼ 11.2 ps (t ¼ 10.1 ps). Similar transient transitions

occur at each row of the circuit, with number of such

transitions doubling at each row and ultimately producing

an exponential amount of glitching at the circuit’s output

relative to its depth.
More generally, a PPUF was constructed as a rectan-

gular array of gates, w gates wide and h gates deep. If the

expected number of output transitions per input transition
for each gate is B, the simulation cost of the PPUF was

shown to be wBh=2. Therefore, the PPUF structure exploits

the gap between implementation and simulation, which is

an exponential function of the logic depth of the circuitry.

It is important to mention that there is another security

primitive, SIMulation Possible, but Laborious (SIMPL),

which also exploits the execution–simulation gap (ESG)

[3]. Initially, the application range of SIMPL was restricted
to authentication and required a relatively small ESG.

However, Rührmair et al. have developed a variety of

security protocols that exploit exponential ESGs [4]–[6].

Very recently, Horstmeyer et al. proposed hardware one-

time pads that can serve as communication PUFs (cPUFs)

[7]. Keys are extracted by optically probing random and

unique optical structures using specially designed lasers.

The keys are then shared using a theoretically perfect
security procedure.

These first-generation PPUFs have several potential

drawbacks including the need for ultra-accurate time

measurements and detection of ultrashort glitches. While

time can be measured with attosecond accuracy, the

required instruments are very expensive. Furthermore, in

order to achieve an acceptable advantage over attackers,

both sides require computational efforts that are at least
several seconds. Therefore, they are slower than the

classical cryptography public-key cryptography protocols.

These drawbacks were eliminated in more recent PPUF

designs.

B. Differential PPUF
The need for ultra-accurate timing and for detecting

glitching was eliminated using a differential PPUF
(dPPUF) [8]. Here, an input vector is simultaneously

presented to two nominally equal circuits whose delay

characteristics differ due to process variation. As the

signals propagate through each circuit, they race against

one another toward an arbiter which locks its output value

to that of the first signal that arrives. Ultimately, it is the

differential timing between the frontier signals of the two

circuits that defines dPPUF operation rather than the
absolute timing of a transient output vector in a PPUF

circuit, and this eliminated the need for ultra-accurate

timing.

The dPPUF design was presented in the context of an

authentication protocol, wherein a verifier issues a

challenge input vector to the user. The user, who is in

physical possession of the dPPUF, executes the challenge

to produce the response within a single clock cycle and
presents this response to the verifier. To authenticate the

user, the verifier compares this to a simulated dPPUF

response to the challenge. Similar to a basic PPUF, the

dPPUF-based protocol takes advantage of the ESG between

the time it would take an attacker to simulate the response,

and the time the user takes to execute the challenge on a

dPPUF IC.Fig. 1. Simple PPUF [2].
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Assuming p is the probability of the more likely output

value (0 or 1) on each output line of a dPPUF, and q is the

probability that a randomly chosen response will be

successfully authenticated, the size of the output vector n
required to achieve q is logðqÞ=logðpÞ. Therefore, to

maximize the proof of strength ðqÞ on a dPPUF of given

size, it is necessary to keep p as close to 0.5 as possible. In

other words, output predictability dictates dPPUF’s
security.

Fig. 2 illustrates the dPPUF architecture proposed by

Potkonjak et al. It uses the concepts of confusion and

diffusion to reduce predictability. It is composed of
alternating layers of booster cells that amplify the extent

of output switching, and represser cells that unpredictably

repress frontier signal transitions which would otherwise

lock the arbiters. These concepts of repression and

boosting are crucial to the creation of frontier signals

that are highly unpredictable. Hence, when using a

dPPUF, it is sufficient to detect a winner in a race

between two signals using an arbiter.
Potkonjak et al. also studied the output predictability of

the dPPUF architecture by measuring the output proba-

bilities for each of its output bits over many input vectors

[Fig. 3(a)]. The red dashed lines depict the ideal case

where PðOi ¼ 1Þ ¼ 0:5 for all i. Similarly, the predictabil-

ity for a single input vector across 1000 different dPPUF

instances was also simulated [Fig. 3(b)]. The study

concluded that the few suboptimal outputs should be
excluded from verification in order to maximize dPPUF

security. Finally, Fig. 3(c) illustrates the extent of

correlation between output bits. If an attacker can

successfully predict multiple outputs by simulating only

a few, this affords him a proportional advantage in

simulation time. Low correlations were observed between

a large majority of output bit pairs.

Although dPPUFs eliminate many of the problems of
the first-generation PPUF, they still require that at least

one of the communicating parties invest significant

resources and time in simulation.

C. Matched PPUF
Matched PPUFs (mPPUFs) [9] are the first security

primitive that enable the execution of a number of

cryptographic and other protocols in a single clock cycle.

The idea is simple and represents a complete departure

from ESG: two identical PPUFs are created in such a way

that creation of a third identical PPUF is essentially
impossible. mPPUFs are created using both process

Fig. 2. dPPUF architecture of height h and width w [8]. A challenge

vector propagates through repeated stages of b booster (XOR) and r

represser ðRÞ cells (right), with partly maximally interacting and partly

random interstage networks. Signals from two nominally identical but

physically unique PPUFs race to arbiters ðAiÞ to produce the response.

Fig. 3. For w ¼ 64 and h ¼ 10, probability that an output bit will equal to 1 (a) for one dPPUF and (b) for 1000 different dPPUF instances given the

same input. (c) Correlation between output bits Oi and other output bits Oj [8].
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variation and device aging. Essentially, each party ages a
large number of gates in their PPUFs in order to create

identical paths through the circuit. Parts that cannot be

matched are removed from the PPUFs using either power

gating or software mechanisms. Since the PPUF delay

characteristics are public, no storage or sharing of secret

keys is necessary and the diverse applicability of public-key

security may be availed. Further, by obviating the need for

simulation, this security is achieved in a single-cycle, low-
energy operation.

In [9], Meguerdichian and Potkonjak leveraged a

controlled and reversible device aging technique (e.g.,

negative-bias temperature instability (NBTI)-induced tran-

sistor slowdown [10]) to age a subset of the gates of each

communicating party and disable the unmatchable gates,

thus producing perfectly matched PPUFs. Under the

assumption that gate delays are randomly distributed
between 0 and 1, and that device aging can increase a

gate’s delay by up to 0.5, Meguerdichian and Potkonjak

showed that 25% of gates would not be matchable and an

attacker making use of the publicly available delay

characteristics to match his PPUF to that of the

communicating parties would succeed in doing so for

only 58% of his matched gates. On the other hand, the

infeasibility of simulation-based attacks is apparent.
Fig. 4 illustrates the mPPUF architecture which is

similar to the dPPUF architecture (Fig. 2). It is also similar

to the dPPUF in that its output vector depends on the

frontier signal which, in the case of an mPPUF, races

against the clock. This architectural detail has been

borrowed to enable a continued independence from

ultra-accurate timing requirements. The mPPUF architec-

ture also uses boosters and repressers toward minimizing
predictability. While boosters increase switching frequen-

cy, the role of repressers is to decrease the switching

frequency in an unpredictable manner in order to repress

frontier signal transitions and thereby increase simulation

complexity and unpredictability. For a represser such as a

k-input nand gate, the unpredictability of its output

depends on the probability distribution of its input. As it
turns out, the effect of multiple stages of identical

repressers is a decrease in the randomness of input

between consecutive represser stages, in a manner that

increases switching frequency in a more predictable

manner rather than decreasing it in an unpredictable

one. It was shown that alternating among different classes

of repressers between stages mitigates this effect [9].

Consequently. the application of repressers was refined to
the use of different classes of repressers at different stages.

The final stage of the mPPUF architecture is a terminator

cell, such as a k-input or gate, that increases the stability of

the inputs to the arbiters.

D. Quantized PPUF
Quantized PPUFs (qPPUFs) eliminated the last mPPUF

bottleneckVthe need that a user uses a different PPUF in

communication with different parties [11]. Since mPPUFs

require the delays of corresponding PPUF gates to be closely

matched, the number of matchable gates reduces exponen-

tially as the number of communicating parties increases.
qPPUFs inherit their architectures from mPPUFs (Fig. 4).

However, they differ in that each user’s PPUF is aged

independently of all other users. Matching then boils down to

identifying and disabling those gates corresponding to the

pair of communicating PPUFs which cannot be matched.

In order to accomplish matching with k different

parties, a user disables k different sets of components on

his PPUF. Note that he separately communicates with each
of the other users, enabling and disabling the

corresponding set of PPUF components in turn. Since

aging is accomplished independently for each PPUF,

switching communication to a different user in this

manner can be accomplished in real time. Consequently,

this new mPPUF enables a user to use a single PPUF to

communicate with an arbitrary number of parties in which

each of them requires only a single cycle computation.
qPPUFs achieve independent aging by quantizing the

delay profile of each component class to a limited set of

Fig. 4. mPPUF architecture of width w and height h [9], consisting of s stages of b booster cells ðBÞ and r represser cells ðRÞ, with a final level of

terminator cells ðTÞ to enhance stability. Signals from input flip flops ðffÞ race against the clock to arbiters ðAÞ, which output 0 if the signal

transitions before the clock and 1 otherwise.
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values. A user then ages each component to coincide with
an achievable quantum, thereby eliminating the need for

coordinated aging. If a component cannot be aged to any of

the preselected quanta, it is disabled. And if a component

can be aged to multiple quanta, one is chosen randomly.

Fig. 5 depicts such a quantization for a sample PPUF

component with a Gaussian delay profile (mean ¼ 1,

standard deviation ¼ 0:1).

To match their PPUFs, one user from each user pair
transmits its delay quanta assignments for each compo-

nent. This is followed by a reply message identifying the

components that could not be matched and must be

disabled for that user pair. An n-to-n public-key commu-

nication can follow, wherein each of n users in a group

achieves secure pairwise public-key communication with

other members of the group, using a single PPUF while

incurring little overhead when switching between com-
munication partners, akin to the one described in [11].

A major drawback of quantization was identified to

be a drastic reduction in matching probability. For the

delay distribution in Fig. 5 and with two quanta,

Meguerdichian and Potkonjak showed that the matching

probability is about 0.35. This implies a similar reduction

in the effective size and security of this qPPUF. While

one solution is to increase the size of the PPUF, a more
effective alternative was shown to be one where each

PPUF component is replicated to increase its probability

of getting matched.

Fig. 6 shows the change in matching probability as

the number of replicas and the number of quanta are

varied under the same delay distribution as in Fig. 5.

Increasing the number of quanta improves the matching

probability up to a point, after which the quantization

intervals begin to overlap, thereby reducing the matching

probability. This reduction arises from the randomized

assignment of a delay quantum to a component when it

can satisfy multiple quanta. In contrast, increasing the

number of component replicas monotonically improves

matching probability.

Finally, mathematical and statistical models of gate
delay, threshold voltage, effective channel length, and

aging were applied to study the behavior of qPPUFs [12]–

[15]. Via simulation, Meguerdichian et al. also showed that

the output predictability of a qPPUF is near-optimal for a

vast majority of its output bits (w ¼ 128, b ¼ 2, r ¼ 1,

s ¼ 7, eight replicas, two quanta). Further studies showed

that the probability that an attacker could match a single

component of his PPUF to already matched components of
two users was greater than 0.8 but less than 1. However, it

was argued that with just 2000 PPUF components, the

probability that an attacker fully matches the qPPUF was

on the order of 10�92, despite a probability of matching a

single PPUF component equal to 0.9.

E. Digital PPUF
Digital PPUFs aim to provide low-energy public-key

security that is independent of operational and envi-

ronmental conditions, as well as, natural device aging

[16]–[19]. This was achieved by avoiding an analog

mechanism as the basis of the underlying security
primitive. A pair of randomly generated digital bimodal

functions (DBFs) is used instead. One of these functions

fcompact can be computed quickly while its companion

fexpand is unacceptably computationally intensive. In

other words, digital PPUFs reverted to the use of an

ESG to gain a disproportionate computational advantage

over an attacker.

Fig. 5. qPPUF quantization example, showing possible quanta (red

dashed) and gate delays that can be aged to match some quantum

(shaded) for five quanta. Those gates with delay in the green shaded

regions can age to two quanta (one is chosen at random) [11].

Fig. 6. Effect of varying quantization and component replication on

matching probability [11].
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The following equation

Input: ai; i 2 f0; 1; 2 . . . 11g (1a)

Output: cj; j 2 f0; 1; 2; 3g (1b)

bj; j 2 f0; 1; 2; 3g (1c)

b0 ¼ a0a1a2 þ �a1a3

b1 ¼ a4 �a5a6 þ �a4 �a7 þ a5a7

b2 ¼ a8 �a9 þ a9 �a10 �a11

b3 ¼ �a0 �a4a8 þ a0 �a10

8>>><
>>>:

(1d)

c0 ¼ b0b1b2 þ �b1b3

c1 ¼ b1
�b0b3 þ �b1

�b3 þ b0b2

c2 ¼ b1
�b3 þ b2

�b0
�b1

c3 ¼ �b0
�b2b3 þ b1

�b3

8>>><
>>>:

(1e)

c0¼a0a1a2a4 �a5a6a8 �a9 þ a0a1a2a5a7a8 �a9

þa0 �a10a4 �a5 �a6þa0a1 �a10 �a11a2a9þa0 �a10a4a5 �a7

þa0a1a2 �a4 �a7a8 �a9þa0 �a10 �a4 �a5a7þ �a0 �a4 �a5a7a8

þ�a1a3a4 �a5a6a8 �a9þ �a1a3a5a7a8 �a9

þ�a1a3 �a4 �a7a8 �a9 þ �a1 �a10 �a11a3a4 �a5a6a9

þ�a1 �a10 �a11a3a5a7a9 þ �a1 �a10 �a11a3 �a4 �a7a9

c1 ¼ � � �
c2 ¼ � � �
c3 ¼ � � �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(1f)

presents a sample digital PPUF where (1d) and (1e)

comprise fcompact. fexpand is derived by substituting (1d)
into (1e) and reducing to a minimal sum of products [see

(1f)] or product of sums. Note that, in the general case, it is

required that the number of inputs equals the number of

output functions, i.e., the cardinality of i equals to that of j.
Here, each set of subfunctions bi is identical to the

subfunctions ci. In general, a digital PPUF can require

several such iterations of the output subfunctions to arrive

at the DBF fexpand. It is also required that the number of
unique inputs to each output subfunction be bounded by

some k to enable field-programmable gate array (FPGA)

configuration and synthesis of the subfunctions in fcompact.

While fcompact and fexpand are equivalent, and fexpand

can be derived from fcompact via iterative substitution and

reduction, the inherent difficulty in functional decompo-

sition makes it impossible to derive fcompact from fexpand.

Further, Xu et al. [16] show that the number of product
terms in fexpand exponentially increase with the number of

primary inputs ai and the number of iterations of the

output subfunctions, whereas the number of terms in

fcompact only increases linearly. Herein lies the ESG setting

fcompact as the private key and fexpand, or some nontrivial

subset thereof, as the public key makes it infeasible for an

attacker armed with the public key to compute the DBF

output. Xu et al. [16] discussed this infeasibility and
showed that with 20 iterations and ten inputs, the

simulation time of fexpand is close to seven orders of

magnitude slower that the execution time of fcompact.

Based on these parameters, it was also shown that

defeating the public-key communication scheme described

below will take an attacker about 283 years.

A digital PPUF can be distributed and enlisted for

public-key communication from A to B in the following
manner. B selects a sizeable subset of fexpand and transmits

it to A. Then, A chooses to store a random and manageable

subset of the set of terms transmitted by the B as B’s public

key. Let the number of terms in this public key be l. For

each such term fi, A randomly selects its sum-of-products

or product of-sums representation. Further, it selects a

random term in the selected representation. Next, it

generates the input vector pi that would make
fiðpiÞ ¼ ri ¼ 1 if a product term was selected, or

fiðpiÞ ¼ ri ¼ 0 if a sum term was selected. Note that it is

sufficient to select pi as the input that would set the

selected random term from fi to 0 or 1, depending on the

functional representation chosen, and this can be accom-

plished in linear time. Then, A concatenates each pi for

i 2 f1; . . . ; lg to construct a vector P1. Similarly, vector R1

is generated from the ri’s. This process is repeated N times
to generate N vectors Pj and Rj for j 2 f1; . . . ;Ng. N is a

customizable parameter that further boosts the ESG and

increases security while also increasing the energy costs

and execution time.

Finally, A encrypts its message with the series of

vectors Rj and broadcasts the encrypted message along

with the vectors Pj. B, who is in possession of the private

key fcompact, quickly computes vectors Rj from Pj and may
then decrypt the message. An attacker overhearing the

communication between A and B must, on average,

compute half of the potentially exponentially number of

terms transmitted by B to successfully decrypt the

message, making this proposition infeasible.

Fig. 7 illustrates the sequential logic cluster (SLC)

architecture that is designed to compute fcompact for a given

input vector. It can also be used to derive the subset of
fexpand that forms the basis of the public key. The input

vector undergoes random shuffling before entering w
k-input lookup tables (LUTs) that each applies the

combinational logic for the corresponding output subfunc-

tion of fcompact. The output of each iteration is stored in

flip-flops at the end of computation before being fed back

into the input stream for the next iteration. With this

architecture, a large number of unrepeated SLCs can be
produced simply by altering the random shuffling or the

contents of the SRAM cells in the LUTs.

The performance of digital PPUFs was analyzed in

terms of the optimality of output prediction [Fig. 8(a)],

and the extent to which the value of each output bit

depends on that of the other output bits [Fig. 8(b)]. It was

found that output prediction was near-optimal for all bits
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in the average case, and that a majority of output bit pairs

were near-independent (conditional probability close to

0.5). It was also shown that the energy costs of the SLC
implementation-based decryption is on par with that of

hardware implementations of AES and three orders of

magnitude better than that of RSA. A major drawback is

the overhead involved in the repeated communication of

the large subset terms from fexpand that form the basis

of the public key. However, technological trends show

communication speeds outperforming storage speeds [20],

which translates to a widening gap between requirement
of an attacker who must store this large subset of terms,

and that of the communication parties who must merely

share them.

F. Nano-PPUF
Nano-PPUFs provide a faster, low-energy and more

secure alternative to device aging, to overcome the burden

of simulating the entire PPUF at one of the communicating

parties (e.g., basic and differential PPUFs) [21]. Nano-
technology components are inherently faster and use

lower power than current complementary metal–oxide–

semiconductor (CMOS) technologies. Further, they natu-

rally exhibit nonlinear circuit characteristics, in addition

to the randomness that is inherent to their synthesis. This

yields an ESG that is larger than in circuits composed of

linear components. Nanotechnology components also

express the unique characteristic of bidirectional signal
propagation: Since input signals can be applied at any end

of the circuit, this exponentially increases the input and

output spaces with respect to a comparable CMOS PPUF.

Together, these characteristics make nano-PPUFs more

secure than conventional PPUFs.

Fig. 9 illustrates an example nano-PPUF. It is

composed of a grid of nano-PPUF cells, with adjacent

cells connected over matching pins. Each cell is modeled

as a geometric random network generated during the

synthesis of III–V nanowires. Nodes within the network

are uniformly distributed and connected based on

threshold distances. Each node exhibits nonlinear cur-

rent–voltage characteristics, which gives rise to the

nonlinear circuit characteristics of nano-PPUF cells and

grids. The bidirectional signal propagation property of
these circuits allows for inputs to be applied at any of the

pins at the boundary of each cell. Therefore, nano-PPUF

inputs are defined as a combination of input values (the

voltages applied at the inputs) and input sets (the set of

pins at which the voltages are applied). The rest of the

boundary pins define nano-PPUF outputs, and are

similarly composed of output values and output sets.

Fig. 7. Architecture of a sequential logic cluster [16].

Fig. 8. For 64 primary inputs, 32 iterations, and 1 000 000 input

vectors: (a) probability that an output bit is equal to 1, and

(b) conditional probabilities between output bits Oi and other output

bits Oj [16].
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To enable runtime definition of input and output sets,

each pin at the boundary of a cell is multiplexed to

facilitate input or output. This is what allows for arbitrary

definitions of inputs and results in the exponential growth

of the input/output spaces. Specifically, Wendt and

Potkonjak [21] define a polyomino partitioning strategy

where the set of cells accepting inputs are adjacent and
connected, and formed by joining one or more equally

sized squares edge to edge (see Fig. 9). It is shown that this

strategy ensures an input space that is exponential in the
number of cells.

Two protocols are described as applications for nano-

PPUFs: authentication and public-key communication. Au-

thentication works as follows: The verifier issues a challenge

to the user as an input to the user’s nano-PPUF (input set and

values). The user executes the challenge on his PPUF and

presents the response to the verifier. The verifier simulates

one or a few partitions of the user’s nano-PPUF to verify that
the input and outputs along their boundaries converge to the

response provided. An attacker cannot know which partitions

the verifier may simulate and must simulate the response over

the entire nano-PPUF circuit, which is an infeasible task if the

circuit is large enough.

Public-key communication is achieved as follows: The

sender simulates a challenge and response on a partition of

the receiver’s nano-PPUF, and encrypts his message with
the challenge. He transmits the encrypted message along

with the response and the input set of the challenge to the

receiver. The receiver searches for the input values

corresponding to the challenge until the response values

are matched. Once the entire challenge is recovered, the

message is decrypted. On average, an attacker must

simulate a search over half the set of all input values for

the given input set, which is exponential in the size of the
input set, making the attack infeasible.

Wendt and Potkonjak assessed the security of nano-

PPUFs via SPICE circuit simulations. The study showed

low correlation between input values and outputs. It was

observed that even if such a correlation was discovered,

given that the number of possible input sets is exponential

in the size of the circuit, this would make it difficult to

compute and store all sets of relationships for future
lookup. In contrast, simulations showed strong correla-

tions between a small set of output pairs (Fig. 10).

Fig. 9. Example of a 5 � 5 nano-PPUF grid. Adjacent nano-PPUF cells

are connected via adjacent pins. Example polyomino partitions of size

4, 4, and 5 are shaded [21].

Fig. 10.R2 correlations between a subset of nano-PPUF output pins. Both figures depict the same nano-PPUF with different input sets. Pin 65 has

perfect correlation because it returns a constant value due to process variation at network synthesis [21].
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However, the correlated pairs changed when the input set
changed. Consequently, Wendt and Potkonjak again

posited that it would be infeasible to compute and store

an exponential number of such correlations for each input

set. Finally, simulation attacks were observed to be

infeasible due to the exponential relationship between

the circuit size and simulation time.

III . PPUF PROTOCOLS

In this section, we sample from a wide spectrum of security,

privacy, and trust protocols that employ PPUFs as a hardware

primitive. Our emphasis is more on demonstrating new

paradigms and strategies that facilitate the creation of

protocols than on providing comprehensive coverage. The

most important observation is that conceptually entirely new

paradigms with respect to classical and quantum cryptography
are required and created. What is common to all of them is

that they are often surprisingly simple, and that all of them are

intrinsically resilient against physical and side-channel

attacks. For each of the representative protocols, we present

their procedures when gap-based or matched PPUFs are used.

Here, the most important observation is that matched PPUF-

based protocols are invariably ultrafast and energy efficient:

they rarely require more clock cycles and their PPUFs often
have only a few hundred gates.

A. Public-Key Cryptography
First, we consider gap-based public-key communica-

tion protocols and follow that with a few modifications

mainly related to the use of public-key infrastructure

protocols presented by Beckmann and Potkonjak [2]. As

with classical cryptography procedures, all PPUF-based
public-key cryptography protocols assume the existence of

a third trusted-party public-key infrastructure to prevent

false impersonation attacks where the attacker pretends

that he is one of the legitimate parties. Let us consider the

situation where party A wants to send a secret message to

party B using a gap-based scheme. Both parties A and B are

in possession of their PPUFs whose public characteristics

have been deposited with the trusted party T. Recall that
for a given input I anybody can use simulation and

calculate the correct corresponding output O using long

simulations that, at the very least, require times in range of

seconds. At the same time, the execution of A’s or B’s PPUF

can be accomplished in the nanosecond range or faster.

The key challenge is to now create protocols that

leverage this gap between the execution and simulation

times, say of a factor of 1012, into two advantages for each
of participating sides over the potential attacker. The

advantage of side A that has to decrypt the message from B
is obvious and provided directly by the ESG. The advantage

of side B arises in the following manner. B selects a large

set of numbers S that has on the order of 1012 elements,

and sends it to A. Set S has a compact representation. For

example, it may be 1012 numbers starting from a certain

specified number. B now randomly selects an element
from S and uses it as input I in a simulation to calculate the

corresponding output O of A’s PPUF. Finally, it uses

bitwise xor of the input I with the actual message AM to

create the encrypted message EM and sends it to A together

with the output O.

Now A uses its PUF to find the input that corresponds to

output O, trying all inputs from set S. Once that input is

identified, all that is required is for it to xor input I and
encrypted message EM to obtain the actual message AM. A
can do it in a few seconds because it has its fast PPUF. Recall

that A has a 1012 factor speed advantage over the attacker.

B also has similar advantage because it has to compute

only single challenge–response pair as it is the one that

selects the input I. We see that, by selecting the size of set

S, A, and B can optimize their relative execution times.

There are other degrees of freedom that can be used for
boosting this advantage over the attacker. For example,

each of the legitimate parties may have multiple PPUFs

where message sender randomly selects which one is used.

Modern ICs have billions of gates, and each PPUF requires

no more than a thousand gates.

Note that the presented protocol ensures that the

attacker cannot decrypt the encrypted message, but, in this

form, it allows impersonation attacks. However, a very
small alteration is sufficient to prevent this attack. For

instance, A can send a message M to B that is encrypted

using B’s PPUF and is used for additional xor in the

protocol presented above. This message can only be

decrypted using B’s PPUF in reasonable time. Finally, we

conclude that it may be inferred from the ESG of the

presented protocol that the expected time to crack the

encryption is more than 100 000 years, and may be further
boosted in several ways.

We now consider public-key cryptography for matched

PPUFs. For the sake of brevity, we discuss quantized

PPUFs. Again, we assume that there is a third trusted-party

public-key infrastructure where all parties deposit the

delays of each gate in the standard PPUF structure, after all

the gates have been aged to the standardized quantization

level. If two parties want to communicate with each other,
they disable all unmatched gates in their PPUFs and begin

their communication. The expected cardinality of the two

matched PPUFs is well beyond the feasibility of simulation

in any reasonable time on any reasonably sized distributed

computing platform.

Now, there are several ways how public-key commu-

nication can be organized. In the simplest instance, all that

is required is for party B to select an input I and calculate
the corresponding output using the PPUF configuration

that is matched to that of A. The final step is xoring of the

output O and actual message AM into the transmitted

message SM that is sent to party A together with input I.
Party A also required only two steps. The first is the

calculation of output O and the second is xoring of the

output O and SM which yields the actual message AM. Note
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that, in this protocol, the exchange of only a single message
which is composed of input I and the encrypted message

SM is sufficient. The only required computations consist of

one PPUF calculation and a single bitwise xoring. Hence,

this is the fastest and lowest energy realization of a public-

key protocol.

B. Secure Location Authentication
Secure location authentication enables verifier V to

provably establish the claimed location of another

participating party A [22], [23]. Recall that the verifier

can deploy n measurement devices and ask A to send

signals to each of them. In 3-D space, it is sufficient to use

four measurement devices. The problem has not been

solved in the domain of classical cryptography. A scheme

where V asks party A to send its digital signature for a

specified challenge along with the global positioning
system (GPS) signal is not effective because A can provide

its secret key to another helping party that serves as its

proxy. Interestingly, the secure location problem can be

solved using quantum cryptography.

The problem is also easily solved using any of the

proposed PPUF designs. And at least in the case of

matched PPUFs, its energy expense and time requirements

are minimal and correspond to a few computational cycles
if only digital components are considered. The idea is to

slightly modify the procedure for remote trusted sensing

and/or trusted computing. Note that, in these protocols,

the verifier’s PPUF can load any data to its PPUF, while A
can receive its GPS data only through an antenna.

The essential observation is that A’s PPUF cannot be

replicated and, therefore, only A can correctly respond to

V ’s challenges. A cannot remotely hap its proxy because
this would introduce additional communication delays. In

addition, A would have to produce PUF results for

challenges and the GPS signals, and accurate results are

possible only if A is actually at the claimed location or if its

PPUF can use data from memory. The latter case would

require hardware changes that would invalidate the delays

of A’s PPUF.

C. Matched PPUF-Based k-Anonymity Security
Protocol

Privacy has emerged as one of the dominant system

constraints and essential application desiderata for nu-

merous important domains. For example, it is particularly

important to mobile users (e.g., cybercar applications that

provide complete information about locations of cars and

their trajectories), and in the financial, medical, and social
network domains which may provide sensitive information

about users. There have been a number of attempts to solve

this problem, for instance, zero knowledge techniques

have been proposed to preserve user privacy of authenti-

cation at toll booths. While these techniques appear

algorithmically sound, their computational requirements

are excessive: even the most efficient implementations

require days for execution on modern personal computers
(PCs). Gap PPUF-based solutions are somewhat faster but

still require computational efforts with runtimes in the

range of seconds. However, quantized matched PPUFs

produce protocols that require only a few clock cycles, i.e.,

nanoseconds or so.

The essence of the approach is as follows. Let us

assume that a toll owner (verifier) has m drivers (users),

each equipped with a PPUF with uniform architecture. The
PPUFs follow the quantized matched PPUF paradigm.

Therefore, the verifier can configure her PPUF in such a

way that it has identical input/output relationship with any

subset of users. The larger the required overlap of matched

gates, the smaller the cardinality of this subset will be. At

the extreme, if the necessary overlay is very high, only a

single user matches the service provider.

The basic k-anonymity protocol starts with a step where
the verifier partitions all users into n groups so that each

group has k1 drivers. For each group, she finds all gates

that are shared among all k1 drivers in that group. At the

first interaction step, she sends the characteristics of each

of the n quantized matched PPUFs to the corresponding

drivers, together with a randomly generated challenge.

If a driver is able to calculate the correct response to

the challenge corresponding to one of the quantized
matched PPUF characteristics, it is a potential sign that he

indeed is one of paying subscribers. The chances that an

attacker can compute the correct answer can be calculated

using the following reasoning. If we denote the probability

of matching two corresponding gates by pg and the number

of gates in each PPUF by ng , then the probability pa1 that

the attacker matches with a particular group is equal to pg

ng. Hence, the attacker’s chance to match with any one of
the n groups is equal to 1� ð1� pa1Þn which, for realistic

numbers, is a very small quantity.

This probability can be reduced using the following

procedure. The verifier additionally partitions users in the

group for which she received the correct responses into

two groups so that each group contains at least k2 drivers,

where k2 is smaller than k1. These new groups are

established in such a way that the number of matched
PPUF gates in each new partition is maximized. If the user

with the correct response is legitimate, he can still easily

calculate the response to verifier’s challenge for the new

matching. However, the attacker’s probability is addition-

ally reduced. Further, this procedure can be iteratively

repeated until the probability of a successful attack is

satisfactory. The key idea is that the number of matched

gates in each group is maximally increased which allows
for the reduction in anonymity to be favorably traded

against the chances of a successful attack.

D. Trusted Sensing and Computing
The quantitative advantages of PPUF-based crypto-

graphic protocols in terms of metrics, such as time of

execution, footprint, and energy, are important. They are
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Fig. 11. Quantized matched PPUF integrated with multiplier circuit.
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often three or more orders of magnitude more efficient in
terms of energy. These advantages are further exaggerated

by their resiliency against physical and side-channel

attacks. However, these protocols will be serious alter-

natives to classical cryptography only if and when the

security of these protocols is adequately tested, i.e., when

numerous researchers launch numerous attacks.

From an application point of view and in a qualitative

sense, the benefits of PPUFs are more apparent and
practical. These benefits are particularly pronounced for

quantized matched PPUFs. Specifically, there are two

major advantages of matched PUFs using standardized

quantization over other PPUF schemes. One is that it is the

first security primitive (building block) that enables

execution of public-key protocols in a single clock cycle

while providing resiliency against physical and side-

channel attacks. The other is that it enables integration
with standard logic is such a way that the secure flow of

information is guaranteed. This property can be used for

the creation of a spectrum of new security, privacy, and

trust systems, protocols, and applications. In the rest of

this section, we focus on techniques that enable the

creation of localized and distributed secure systems that

employ quantized matched PPUFs. It is important to

emphasize that these techniques can be applied to other
types of PPUFs. However, these systems are significantly

less efficient, except in the case of digital PPUFs.

Fig. 11 shows one way how we can integrate a

standardized quantized PPUF with a multiplier. A part of

the multiplier is used as part of the aged PPUF. The

integration is realized in such a way that a subset of gates

of the multiplier is simultaneously used for the computa-

tion of multiplications, and as part of the security primitive
PPUF. As in Fig. 11, this may be achieved by treating the

output of this subset as input to a quantized matched

PPUFVmultiple stages of booster ðBÞ and repressor ðRÞ
cells that race against the clock to the arbiters ðAÞ.
Therefore, if such a multiplier is used for computation, it

automatically also participates in producing the PPUF

output. The PPUF output, therefore, depends on the

computation that is conducted by the multiplier and
provides proof that a particular computation was indeed

performed by the multiplier. Of course, an arbitrary

arithmetic or logic unit may be used instead of the

multiplier.

Similarly, instead of the computational or logic

modules of processor, memory, or application-specific

ICs, we can overlap PPUF circuitry with the circuitry of a

sensor or a radio receiver to fulfill trusted sensing [24],
[25] and communication requirements. Yet another option

is to integrate an aged matched PPUF with clock circuitry.

The key observation is that the attacker cannot alter any

part of the system that is integrated with a matched PPUF

without also altering the PPUF’s properties. This is so

because the delay characteristics of the pertinent PPUF are

impacted by the driving loads of the integration gates.

Using integrated matched PPUFs, one can create a variety

of security, privacy, and trust protocols. We now discuss two

such protocols. The first is for remote trusted sensing, where

the goal is to design a distributed system that consist of two

devices where the first receives trusted data from the second.
The data are trusted in the sense that the first device can

check that the received data are from the second device, and

that it is collected at a specific time and a specific location.

This is accomplished in the following way.

The distributed hardware platform is shown in Fig. 12.

Both devices client ðCÞ and server ðSÞ have identical core

architectures. However, while device S receives inputs to

its matched PPUF from the GPS or sensors, device C is
designed in such a way that its PPUF inputs can be

independently controlled from regular memory. The GPS

signal contains data that indicate the location and time of

sampling (data collection) at device S. The server sends

both original data collected from sensors and GPS as well

as their corresponding matched PPUF output. The client

can easily check the correctness of the data by comparing it

with the values of its PPUF output for the claimed actual
data. The protocol can be further improved to prevent

replay attacks, if the data that are served to the inputs of

the matched PPUFs are combined using xoring with a set

of challenges that are supplied by the client.

In addition to the trusted remote sensing, the proposed

scheme can also be utilized for remote trusted computa-

tion. Again, we have two participating parties: client ðCÞ
and server ðSÞ. It is assumed that the client has more
restricted energy and computational resources, while the

server provides services to the clients using its plentiful

resources. For example, side C may be a smartphone and

side S may be a data center. The client can check that the

results or intermediate values calculated by the server are

indeed calculated by the server at claimed times using a

variant of the protocol for remote sensing. Hence, the

client can probabilistically check the results and the
required time by the data center. This checking can be

done either in real time or offline, depending on the

application and resources available at the client.

Fig. 12. Trusted sensing system and flow.
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IV. TESTING PPUFs

In this section, we briefly discuss aspects related to testing

PPUFs. We place equal emphasis on establishing relevant

testing issues, the state-of-the-art testing techniques, and

current performance of various types of PUFs and PPUFs.
Testing is an essential step in qualifying ICs for the

actual usage. It has two main aspects. The first is

manufacturing, where the goal is to check if the IC

implementation was completed without faults. The second

is functional testing, where the correctness of design is

evaluated. Similarly, it is crucial that the design and

implementation of PPUFs are properly evaluated before

their deployment.
It is easy to see that IC manufacturing testing

corresponds to gate and transistor level characterization

(GLC) where delay, leakage, or some other device metrics

are analyzed. GLC is a well-studied topic [26]. In order to

address functional testing, one has to first define security

attacks that are relevant to PPUFs. Currently, it appears

that prediction and emulation attacks are the most

effective. In prediction attacks, the attacker uses known
challenge–response pairs to guess and accurately calculate

the response for challenges of interest. In emulation

attacks, the attacker tries to create or identify identical, or

at least similar, PPUFs to facilitate subsequent prediction

attacks.

Three specific types of prediction attacks have been

undertaken with remarkable success on PUFs. The first is

the use of linear algebra techniques, and in particular
linear programming, to quickly create a PUF model [27].

The second type employs machine learning methods to

build statistical models that accurately predict the

response for random challenges with high probability.

Finally, recently, it has been shown that side-channel-

based techniques are exceptionally effective in reverse-

engineering PUFs.

There are also a number of statistical metrics for
predicting the expected level of effectiveness of any

prediction attack. For example, it is highly desirable that

correlation between any input and any output, or between

any two outputs, be close to 0.5. It is also important that

the dependency of any output on a small set of inputs and a

small set of outputs is such that effective prediction is not

possible. These statements should stay unchanged even if a

set of intermediate signals are included in the set in order
to avoid prediction attacks involving the calculation of

intermediate signals and subsequently use them for the

prediction of one or more outputs.

It is often exceptionally important that prediction is

prevented for similar inputs, in particular for two inputs

that have bitwise Hamming distance 1. This phenomenon

is named the avalanche effect and is often studied in

classical cryptography. It is well documented that early
types of PUFs and PPUFs often had very weak avalanche

effect properties. While ideally the Hamming distance of

the outputs should follow a uniform distribution, it often
follows Gaussian distributions with a small variance.

However, more recent PPUFs have significantly improved

their avalanche effect distributions. One potential expla-

nation is that some classes of PUFs and PPUFs are not

sufficiently nonlinear and do not have a high enough share

of mixing signals, which are two properties identified by

Shannon as essential for cryptographic systems.

PPUFs can also be analyzed from a hardware point of
view in terms of its predictability. For instance, one can

study the extent to which two PPUFs are similar in terms of

having a large percentage of identical corresponding gates

that have identical responses to the same set of challenges.

It would be natural to label the extreme situation where two

PUFs do not match only on a single gate, a hardware

avalanche effect. Preliminary simulation experiments show

that it is much more difficult to find high-quality PPUF
structures with respect to the hardware avalanche effect. At

the same time, they show that more nonlinear PPUFs

perform significantly better. We expect that the study of

other hardware-based analyses of prediction and/or emu-

lation capabilities will emerge as important criteria in the

design of PUF and PPUF structures.

It is important to note that PPUF selection greatly

depends on process variation and its assumed model. This
dependency is complex. Too little variability makes

measurements difficult. On the other hand, too much

variability may also be detrimental. For instance, if one

gate has a much higher delay than any other gate, it makes

the PPUF an easy target for prediction attacks.

One important PPUF application is its use as a

synchronized random number generator (RNG), i.e., the

creation of two or more hardware RNGs with identical
properties, so that no additional such RNG can be created.

These synchronized RNGs can be used for a plethora of

security and trust applications. Recently, Xu and Potkonjak

[28] have demonstrated that such devices can be easily built

using digital PPUFs. For example, the first digital PPUF

design easily passed the complete NIST randomness test.

V. OPEN PROBLEMS

We finish our PPUF coverage by stating and explaining the

rationale behind the most important pending challenges

and opportunities. These challenges are separated to two

research and development lines: PUF-related challenges

and application-protocol-related problems.

A. PUF-Related Problems

1) Stability: For PPUF-based security primitives to see

widespread use, their behavior must be stable under a

wide range of operating and environmental conditions,

which will endow the security primitive with the property

of reliability and enhance their commercial viability.

However, the first- and second-generation PPUF designs
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can be highly sensitive to power supply noise and drops,
thermal variations, and use-related device aging. These

parameters can affect gate delays in ways that are complex

and difficult to model. For example, this can quickly

introduce inconsistencies in the output of matched PPUFs.

Similarly, unintentional glitching may trigger arbiters

before signals from the inputs actually arrive at the

arbiters. It is, therefore, important to introduce techniques

that can maintain the stability of the PPUF behavior
despite variable operating and environmental conditions,

in a manner that does not compromise fundamental PPUF

properties such as the ESG, rapid execution times, low

computational overhead, etc. Digital PPUFs are a step in

this direction.

2) Secrecy and Predictability: A strong security charac-

teristic of any security primitive is the predictability of its
output given some input. The obvious approach here is to

expose this characteristic via a set of security tests that

prove unpredictability in the behavior of the security

primitive. We can identify at least two such tests. 1) The

distribution of the output bits should be scrutinized for

patterns. For example, the entropy in PPUF output can be

tested via compression techniques with theoretical

guarantees such as the context-tree-weighting method
[29]. The National Institute of Standards and Technology

(NIST) battery of statistical tests may also be applied to

check for nonrandomness. 2) The correlation between

PPUF input and output should be examined. For example,

the strict avalanche criterion tests this condition by

checking if, when a single input bit is flipped, the output

bits flip with probability 0.5. Such tests will be crucial in

determining whether an attacker can gain an advantage
merely by statistically modeling the input/output relation-

ship in a computationally tractable manner.

B. Application-Protocol-Related Problems

1) Aging-Based Protocols: Oblivious transfer protocols

underlie an important class of cryptographic applications

wherein a sender ðSÞ would like to send a message to a
receiver ðRÞ such that R receives the message with

probability 0.5, but S cannot ascertain whether R has

received the message. For example, such a protocol has

been shown to lend itself to commital-protocol-based

secure multiparty communication schemes and zero

knowledge proofs [30]. A simple-matching-based PPUF

protocol may be devised to serve as an oblivious transfer

protocol as follows: S communicates two sets of gates G1

and G2 that it may age. S and R independently pick one of
the two sets and age the corresponding set of gates on their

PUFs. The PUFs are now matched with probability 0.5. S
generates a key based on the output of its PPUF which it

uses to encrypt the message, and transfers it to R. Clearly,

R can decrypt the message with probability 0.5. However,

the problem with such aging-based security protocol

designs is that device aging is a unidirectional operation

and, after a few iterations, a gate may no longer be aged,
effectively destroying the PPUF, or limiting its effective-

ness, within just a few iterations. A solution to this

problem has the potential of vastly expanding the range of

protocols that PPUF-based primitives can support.

2) Suceptibility to Side-Channel Attacks: In Section III-D,

we have discussed the application of PPUFs to trusted

remote sensing and computing. However, in this context,
PPUFs are extremely vulnerable making them susceptible

to side-channel attacks. The attacker may have complete

access to the PUF-integrated chip, including access to

signals at the pins of the IC, revealing timing and power

information among other things regarding the operations

occurring on the IC. Simply encrypting all data before it is

sent off chip (e.g., transfers to memory, disk, network, etc.)

may not be sufficient for this purpose. Clearly, an
important open problem in this context is the execution

of computation and communication on PUF-integrated ICs

while ensuring that no information regarding these secure

operations is revealed via side-channels such as signal

timing, system power usage, electromagnetic radiation, etc.

VI. CONCLUSION

We have surveyed a recently emerging hardware security

primitive: PPUFs. PPUFs support creation of secure

communication, storage, sensing, and computing, as well

as protocols for preserving privacy and ensuring trust.

While currently the two largest PPUF families are gap-

based and matching-based PPUFs, new families such as

digital PPUFs have been proposed very recently. We have

analyzed the properties of these PPUF families, discussed
techniques for testing and evaluating PPUFs, and pre-

sented representative security protocols. The main quan-

titative advantages of PPUFs include energy efficiency,

high throughput low latency, and a small footprint. The

main qualitative advantages are their flexibility in the

creation of new classes of security protocols, and their

permanent integration with sensing and computing

systems to enable trustable flow of information. h
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